Imputation is the process of replacing missing data with substituted values. This is done because of three main problems that missing data causes: missing data can introduce a substantial amount of bias, make the handling and analysis of the data more arduous, and create reductions in efficiency.
impute(
.data,
vars = everything(),
algorithm = "mice",
m = 10,
method = NULL,
FUN = median,
info = TRUE,
...
)
is_imputed(.data)
get_mice(.data)
data set with missing values to impute
variables of .data
that must be imputed, defaults to everything()
and supports the tidyselect
language.
algorithm to use for imputation, must be "mice"
or "single-point"
, see Details. For the latter, FUN
must be given.
number of multiple imputations if using MICE, see mice::mice()
. The mean of all imputations will be used as result.
method to use if using MICE, see mice::mice()
function to use for single-point imputation (directly) or for MICE to summarise the results over all m
iterations
print info about imputation
arguments to pass on to mice::mice()
Imputation can be done using single-point, such as the mean or the median, or using Multivariate Imputations by Chained Equations (MICE). Using MICE is a lot more reliable, but also a lot slower, than single-point imputation.
The suggested and default method is MICE. The generated MICE object will be stored as an attribute with the data, and can be retrieved with get_mice()
, containing all specifics about the imputation. MICE is also known as fully conditional specification and sequential regression multiple imputation. It was designed for data with randomly missing values, though there is simulation evidence to suggest that with a sufficient number of auxiliary variables it can also work on data that are missing not at random.
Use is_imputed()
to get a data.frame with TRUE
s for all values that were imputed.
iris2 <- dplyr::as_tibble(iris)
iris2[2, 2] <- NA
iris2[3, 3] <- NA
iris2[4, 5] <- NA
iris
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5.0 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> 11 5.4 3.7 1.5 0.2 setosa
#> 12 4.8 3.4 1.6 0.2 setosa
#> 13 4.8 3.0 1.4 0.1 setosa
#> 14 4.3 3.0 1.1 0.1 setosa
#> 15 5.8 4.0 1.2 0.2 setosa
#> 16 5.7 4.4 1.5 0.4 setosa
#> 17 5.4 3.9 1.3 0.4 setosa
#> 18 5.1 3.5 1.4 0.3 setosa
#> 19 5.7 3.8 1.7 0.3 setosa
#> 20 5.1 3.8 1.5 0.3 setosa
#> 21 5.4 3.4 1.7 0.2 setosa
#> 22 5.1 3.7 1.5 0.4 setosa
#> 23 4.6 3.6 1.0 0.2 setosa
#> 24 5.1 3.3 1.7 0.5 setosa
#> 25 4.8 3.4 1.9 0.2 setosa
#> 26 5.0 3.0 1.6 0.2 setosa
#> 27 5.0 3.4 1.6 0.4 setosa
#> 28 5.2 3.5 1.5 0.2 setosa
#> 29 5.2 3.4 1.4 0.2 setosa
#> 30 4.7 3.2 1.6 0.2 setosa
#> 31 4.8 3.1 1.6 0.2 setosa
#> 32 5.4 3.4 1.5 0.4 setosa
#> 33 5.2 4.1 1.5 0.1 setosa
#> 34 5.5 4.2 1.4 0.2 setosa
#> 35 4.9 3.1 1.5 0.2 setosa
#> 36 5.0 3.2 1.2 0.2 setosa
#> 37 5.5 3.5 1.3 0.2 setosa
#> 38 4.9 3.6 1.4 0.1 setosa
#> 39 4.4 3.0 1.3 0.2 setosa
#> 40 5.1 3.4 1.5 0.2 setosa
#> 41 5.0 3.5 1.3 0.3 setosa
#> 42 4.5 2.3 1.3 0.3 setosa
#> 43 4.4 3.2 1.3 0.2 setosa
#> 44 5.0 3.5 1.6 0.6 setosa
#> 45 5.1 3.8 1.9 0.4 setosa
#> 46 4.8 3.0 1.4 0.3 setosa
#> 47 5.1 3.8 1.6 0.2 setosa
#> 48 4.6 3.2 1.4 0.2 setosa
#> 49 5.3 3.7 1.5 0.2 setosa
#> 50 5.0 3.3 1.4 0.2 setosa
#> 51 7.0 3.2 4.7 1.4 versicolor
#> 52 6.4 3.2 4.5 1.5 versicolor
#> 53 6.9 3.1 4.9 1.5 versicolor
#> 54 5.5 2.3 4.0 1.3 versicolor
#> 55 6.5 2.8 4.6 1.5 versicolor
#> 56 5.7 2.8 4.5 1.3 versicolor
#> 57 6.3 3.3 4.7 1.6 versicolor
#> 58 4.9 2.4 3.3 1.0 versicolor
#> 59 6.6 2.9 4.6 1.3 versicolor
#> 60 5.2 2.7 3.9 1.4 versicolor
#> 61 5.0 2.0 3.5 1.0 versicolor
#> 62 5.9 3.0 4.2 1.5 versicolor
#> 63 6.0 2.2 4.0 1.0 versicolor
#> 64 6.1 2.9 4.7 1.4 versicolor
#> 65 5.6 2.9 3.6 1.3 versicolor
#> 66 6.7 3.1 4.4 1.4 versicolor
#> 67 5.6 3.0 4.5 1.5 versicolor
#> 68 5.8 2.7 4.1 1.0 versicolor
#> 69 6.2 2.2 4.5 1.5 versicolor
#> 70 5.6 2.5 3.9 1.1 versicolor
#> 71 5.9 3.2 4.8 1.8 versicolor
#> 72 6.1 2.8 4.0 1.3 versicolor
#> 73 6.3 2.5 4.9 1.5 versicolor
#> 74 6.1 2.8 4.7 1.2 versicolor
#> 75 6.4 2.9 4.3 1.3 versicolor
#> 76 6.6 3.0 4.4 1.4 versicolor
#> 77 6.8 2.8 4.8 1.4 versicolor
#> 78 6.7 3.0 5.0 1.7 versicolor
#> 79 6.0 2.9 4.5 1.5 versicolor
#> 80 5.7 2.6 3.5 1.0 versicolor
#> 81 5.5 2.4 3.8 1.1 versicolor
#> 82 5.5 2.4 3.7 1.0 versicolor
#> 83 5.8 2.7 3.9 1.2 versicolor
#> 84 6.0 2.7 5.1 1.6 versicolor
#> 85 5.4 3.0 4.5 1.5 versicolor
#> 86 6.0 3.4 4.5 1.6 versicolor
#> 87 6.7 3.1 4.7 1.5 versicolor
#> 88 6.3 2.3 4.4 1.3 versicolor
#> 89 5.6 3.0 4.1 1.3 versicolor
#> 90 5.5 2.5 4.0 1.3 versicolor
#> 91 5.5 2.6 4.4 1.2 versicolor
#> 92 6.1 3.0 4.6 1.4 versicolor
#> 93 5.8 2.6 4.0 1.2 versicolor
#> 94 5.0 2.3 3.3 1.0 versicolor
#> 95 5.6 2.7 4.2 1.3 versicolor
#> 96 5.7 3.0 4.2 1.2 versicolor
#> 97 5.7 2.9 4.2 1.3 versicolor
#> 98 6.2 2.9 4.3 1.3 versicolor
#> 99 5.1 2.5 3.0 1.1 versicolor
#> 100 5.7 2.8 4.1 1.3 versicolor
#> 101 6.3 3.3 6.0 2.5 virginica
#> 102 5.8 2.7 5.1 1.9 virginica
#> 103 7.1 3.0 5.9 2.1 virginica
#> 104 6.3 2.9 5.6 1.8 virginica
#> 105 6.5 3.0 5.8 2.2 virginica
#> 106 7.6 3.0 6.6 2.1 virginica
#> 107 4.9 2.5 4.5 1.7 virginica
#> 108 7.3 2.9 6.3 1.8 virginica
#> 109 6.7 2.5 5.8 1.8 virginica
#> 110 7.2 3.6 6.1 2.5 virginica
#> 111 6.5 3.2 5.1 2.0 virginica
#> 112 6.4 2.7 5.3 1.9 virginica
#> 113 6.8 3.0 5.5 2.1 virginica
#> 114 5.7 2.5 5.0 2.0 virginica
#> 115 5.8 2.8 5.1 2.4 virginica
#> 116 6.4 3.2 5.3 2.3 virginica
#> 117 6.5 3.0 5.5 1.8 virginica
#> 118 7.7 3.8 6.7 2.2 virginica
#> 119 7.7 2.6 6.9 2.3 virginica
#> 120 6.0 2.2 5.0 1.5 virginica
#> 121 6.9 3.2 5.7 2.3 virginica
#> 122 5.6 2.8 4.9 2.0 virginica
#> 123 7.7 2.8 6.7 2.0 virginica
#> 124 6.3 2.7 4.9 1.8 virginica
#> 125 6.7 3.3 5.7 2.1 virginica
#> 126 7.2 3.2 6.0 1.8 virginica
#> 127 6.2 2.8 4.8 1.8 virginica
#> 128 6.1 3.0 4.9 1.8 virginica
#> 129 6.4 2.8 5.6 2.1 virginica
#> 130 7.2 3.0 5.8 1.6 virginica
#> 131 7.4 2.8 6.1 1.9 virginica
#> 132 7.9 3.8 6.4 2.0 virginica
#> 133 6.4 2.8 5.6 2.2 virginica
#> 134 6.3 2.8 5.1 1.5 virginica
#> 135 6.1 2.6 5.6 1.4 virginica
#> 136 7.7 3.0 6.1 2.3 virginica
#> 137 6.3 3.4 5.6 2.4 virginica
#> 138 6.4 3.1 5.5 1.8 virginica
#> 139 6.0 3.0 4.8 1.8 virginica
#> 140 6.9 3.1 5.4 2.1 virginica
#> 141 6.7 3.1 5.6 2.4 virginica
#> 142 6.9 3.1 5.1 2.3 virginica
#> 143 5.8 2.7 5.1 1.9 virginica
#> 144 6.8 3.2 5.9 2.3 virginica
#> 145 6.7 3.3 5.7 2.5 virginica
#> 146 6.7 3.0 5.2 2.3 virginica
#> 147 6.3 2.5 5.0 1.9 virginica
#> 148 6.5 3.0 5.2 2.0 virginica
#> 149 6.2 3.4 5.4 2.3 virginica
#> 150 5.9 3.0 5.1 1.8 virginica
iris2
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 NA 1.4 0.2 setosa
#> 3 4.7 3.2 NA 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 NA
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
result <- iris2 |> impute()
#> Generating MICE using m = 10 multiple imputations...
#> OK.
#> Imputed variable 'Sepal.Width' using MICE (method: predictive mean matching) in row 2
#> Imputed variable 'Petal.Length' using MICE (method: predictive mean matching) in row 3
#> Imputed variable 'Species' using MICE (method: polytomous logistic regression) in row 4
result
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> * <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.28 1.4 0.2 setosa
#> 3 4.7 3.2 1.46 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
#> NOTE: This data set contains 3 imputed values. Use is_imputed() for details.
iris2 |> impute(algorithm = "single-point")
#> Imputed variable 'Sepal.Width' using its median of 3 in row 2
#> Imputed variable 'Petal.Length' using its median of 4.4 in row 3
#> Imputed variable 'Species' using the modal value "setosa" in row 4
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> * <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 4.4 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
#> NOTE: This data set contains 3 imputed values. Use is_imputed() for details.
iris2 |>
impute(vars = starts_with("Sepal"),
algorithm = "single-point")
#> Imputed variable 'Sepal.Width' using its median of 3 in row 2
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> * <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 NA 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 NA
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
#> NOTE: This data set contains 1 imputed value. Use is_imputed() for details.
iris2 |>
impute(vars = where(is.double),
algorithm = "single-point",
FUN = median)
#> Imputed variable 'Sepal.Width' using its median of 3 in row 2
#> Imputed variable 'Petal.Length' using its median of 4.4 in row 3
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> * <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 4.4 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 NA
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> # ℹ 140 more rows
#> NOTE: This data set contains 2 imputed values. Use is_imputed() for details.
result |> is_imputed()
#> Imputation algorithm: MICE, run get_mice() for the MICE object
#> # A tibble: 150 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <lgl> <lgl> <lgl> <lgl> <lgl>
#> 1 FALSE FALSE FALSE FALSE FALSE
#> 2 FALSE TRUE FALSE FALSE FALSE
#> 3 FALSE FALSE TRUE FALSE FALSE
#> 4 FALSE FALSE FALSE FALSE TRUE
#> 5 FALSE FALSE FALSE FALSE FALSE
#> 6 FALSE FALSE FALSE FALSE FALSE
#> 7 FALSE FALSE FALSE FALSE FALSE
#> 8 FALSE FALSE FALSE FALSE FALSE
#> 9 FALSE FALSE FALSE FALSE FALSE
#> 10 FALSE FALSE FALSE FALSE FALSE
#> # ℹ 140 more rows
result |> get_mice()
#> Class: mids
#> Number of multiple imputations: 10
#> Imputation methods:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> "" "pmm" "pmm" "" "polyreg"
#> PredictorMatrix:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> Sepal.Length 0 1 1 1 1
#> Sepal.Width 1 0 1 1 1
#> Petal.Length 1 1 0 1 1
#> Petal.Width 1 1 1 0 1
#> Species 1 1 1 1 0